Description | The Delicate Interplay Between Light, Interfaces and Design: The Complex Dance that Allows 3D Printing to Scale to Manufacturing
Abstract: The production of polymeric products relies largely on age-old molding techniques. In this talk, I will describe a breakthrough in additive manufacturing—3D printing—referred to as Continuous Liquid Interface Production (CLIP) technology (Science 2015). CLIP, and its recently introduced cousin injection CLIP (iCLIP; Science Advances 2022), embody a convergence of advances in software, hardware, and materials to bring the digital revolution to the design and manufacturing of polymeric products. CLIP uses software-controlled chemistry to produce commercial quality parts rapidly and at scale by capitalizing on the principle of oxygen-inhibited photopolymerization to generate a continual liquid interface of uncured resin between a forming part and a printer’s exposure window. Instead of printing layer-by-layer, this allows layerless parts to ‘grow’ from a pool of resin, formed by light. Compatible with a wide range of polymers, CLIP opens major opportunities for innovative products across diverse industries. Previously unmakeable products are already manufactured at scale with CLIP, including the large-scale production of running shoes by Adidas (Futurecraft 4D); mass-customized football helmets by Riddell; the world’s first FDA-approved 3D printed dentures; and numerous parts in automotive, consumer electronics, and medicine. At Stanford, we are pursuing new advances including new multi-material printing approaches, recyclable materials, materials for advanced ceramics, and the design of a high-resolution printer. High resolution 3D printing, combined with the ability to fabricate free-form negative spaces, open up new applications in microelectronics, “digital dust”—precision particles having un-moldable geometries (Nature 2024, in press), and drug/vaccine delivery devices including novel microneedle designs as a potent vaccine delivery platform and for the sampling of interstitial fluids for health monitoring and the early detection of disease. Bio: Joseph M. DeSimone is the Sanjiv Sam Gambhir Professor of Translational Medicine and Chemical Engineering at Stanford. Previously, DeSimone was a professor of chemistry at the University of North Carolina at Chapel Hill and of chemical engineering at North Carolina State University. He is also Co-founder and former CEO (2014 - 2019) of the 3D printing company, Carbon. DeSimone is responsible for numerous breakthroughs in his career in areas including green chemistry, polymer synthesis, medical devices, nanomedicine, and 3D printing. He has published over 350 scientific articles and holds 240 patents. In 2016 DeSimone was recognized by President Barack Obama with the National Medal of Technology and Innovation. He is one of only 25 individuals elected to all three branches of the U.S. National Academies (Sciences, Medicine, Engineering). DeSimone received his B.S. in Chemistry in 1986 from Ursinus College and his Ph.D. in Chemistry in 1990 from Virginia Tech. |
---|